Liver‐Inspired Polyetherketoneketone Scaffolds Simulate Regenerative Signals and Mobilize Anti‐Inflammatory Reserves to Reprogram Macrophage Metabolism for Boosted Osteoporotic Osseointegration - Gu - 2023 - Advanced Science - Wiley Online Library

Por um escritor misterioso
Last updated 17 junho 2024
Liver‐Inspired Polyetherketoneketone Scaffolds Simulate Regenerative  Signals and Mobilize Anti‐Inflammatory Reserves to Reprogram Macrophage  Metabolism for Boosted Osteoporotic Osseointegration - Gu - 2023 - Advanced  Science - Wiley Online Library
Liver‐Inspired Polyetherketoneketone Scaffolds Simulate Regenerative  Signals and Mobilize Anti‐Inflammatory Reserves to Reprogram Macrophage  Metabolism for Boosted Osteoporotic Osseointegration - Gu - 2023 - Advanced  Science - Wiley Online Library
Abstract 215 Ontogeny influences cardiac macrophage function in homeostasis and after ischemia reperfusion injury
Liver‐Inspired Polyetherketoneketone Scaffolds Simulate Regenerative  Signals and Mobilize Anti‐Inflammatory Reserves to Reprogram Macrophage  Metabolism for Boosted Osteoporotic Osseointegration - Gu - 2023 - Advanced  Science - Wiley Online Library
Advanced Science: Vol 10, No 25
Liver‐Inspired Polyetherketoneketone Scaffolds Simulate Regenerative  Signals and Mobilize Anti‐Inflammatory Reserves to Reprogram Macrophage  Metabolism for Boosted Osteoporotic Osseointegration - Gu - 2023 - Advanced  Science - Wiley Online Library
Harnessing metabolism of hepatic macrophages to aid liver regeneration
Liver‐Inspired Polyetherketoneketone Scaffolds Simulate Regenerative  Signals and Mobilize Anti‐Inflammatory Reserves to Reprogram Macrophage  Metabolism for Boosted Osteoporotic Osseointegration - Gu - 2023 - Advanced  Science - Wiley Online Library
Liver‐Inspired Polyetherketoneketone Scaffolds Simulate Regenerative Signals and Mobilize Anti‐Inflammatory Reserves to Reprogram Macrophage Metabolism for Boosted Osteoporotic Osseointegration - Gu - 2023 - Advanced Science - Wiley Online Library
Liver‐Inspired Polyetherketoneketone Scaffolds Simulate Regenerative  Signals and Mobilize Anti‐Inflammatory Reserves to Reprogram Macrophage  Metabolism for Boosted Osteoporotic Osseointegration - Gu - 2023 - Advanced  Science - Wiley Online Library
Stem cell therapy and tissue engineering strategies using cell aggregates and decellularized scaffolds for the rescue of liver failure - Jiabin Zhang, Hon Fai Chan, Haixia Wang, Dan Shao, Yu Tao, Mingqiang
Liver‐Inspired Polyetherketoneketone Scaffolds Simulate Regenerative  Signals and Mobilize Anti‐Inflammatory Reserves to Reprogram Macrophage  Metabolism for Boosted Osteoporotic Osseointegration - Gu - 2023 - Advanced  Science - Wiley Online Library
PDF) The TRAIL-Induced Cancer Secretome Promotes a Tumor-Supportive Immune Microenvironment via CCR2
Liver‐Inspired Polyetherketoneketone Scaffolds Simulate Regenerative  Signals and Mobilize Anti‐Inflammatory Reserves to Reprogram Macrophage  Metabolism for Boosted Osteoporotic Osseointegration - Gu - 2023 - Advanced  Science - Wiley Online Library
Liver‐Inspired Polyetherketoneketone Scaffolds Simulate Regenerative Signals and Mobilize Anti‐Inflammatory Reserves to Reprogram Macrophage Metabolism for Boosted Osteoporotic Osseointegration - Gu - 2023 - Advanced Science - Wiley Online Library
Liver‐Inspired Polyetherketoneketone Scaffolds Simulate Regenerative  Signals and Mobilize Anti‐Inflammatory Reserves to Reprogram Macrophage  Metabolism for Boosted Osteoporotic Osseointegration - Gu - 2023 - Advanced  Science - Wiley Online Library
PDF) Mitochondrial Transfer Regulates Cell Fate Through Metabolic Remodeling in Osteoporosis
Liver‐Inspired Polyetherketoneketone Scaffolds Simulate Regenerative  Signals and Mobilize Anti‐Inflammatory Reserves to Reprogram Macrophage  Metabolism for Boosted Osteoporotic Osseointegration - Gu - 2023 - Advanced  Science - Wiley Online Library
PDF) Liver‐Inspired Polyetherketoneketone Scaffolds Simulate Regenerative Signals and Mobilize Anti‐Inflammatory Reserves to Reprogram Macrophage Metabolism for Boosted Osteoporotic Osseointegration
Liver‐Inspired Polyetherketoneketone Scaffolds Simulate Regenerative  Signals and Mobilize Anti‐Inflammatory Reserves to Reprogram Macrophage  Metabolism for Boosted Osteoporotic Osseointegration - Gu - 2023 - Advanced  Science - Wiley Online Library
Liver‐Inspired Polyetherketoneketone Scaffolds Simulate Regenerative Signals and Mobilize Anti‐Inflammatory Reserves to Reprogram Macrophage Metabolism for Boosted Osteoporotic Osseointegration - Gu - 2023 - Advanced Science - Wiley Online Library

© 2014-2024 zilvitismazeikiai.lt. All rights reserved.